The Making of "Iron Bridge" Road in Pike County, Indiana:

William T. Washer, the Smith Bridge Company, and Bridge #150

by

James L. Cooper

-unless otherwise noted, photos courtesy of http://www.HistoricBridges.org/

With special thanks for the assistance of James A. Barker

September 2013

As was their practice, the Pike County Board of Commissioners authorized two of its members – Patrick McNabb and Herman Henke – to build a bridge across the Patoka River on the Surphur Springs and Augusta Road in June 1875. Within a month, the board adopted plans and specifications drawn up by A. H. Miller for "the Iron Arch Bridge No. 1, Smith Bridge Company, Toledo, Ohio."

On the 5th of September, the board received construction proposals for the bridge "at or near SW of NE quarter of Section 2, Township 2 South, Range 7 West." The commissioners promptly awarded a construction contract to W. T. Washer of Troy, Perry County, for the stonework at \$6.75 per perch² "upon which is to be placed Smith Patent Wrought Iron Open Arched Bridge at \$22 per [lineal] foot." The County Auditor then transcribed detailed specifications for the substructure and superstructure along with the Articles of Agreement with Washer into the "Commissioners Record."

The specifications for the bridge show quite a bit of collaboration between the parties. "The rock to be used in the building and construction of the work aforesaid [i.e., abutments and wing-walls] shall not be less than twelve inches in thickness, to be well jointed, and the face of the abutments and wing-walls are to be dressed the same as rocks are dressed on the Postlelhwait Mill Bridge on Patoka River in Dubois County". Washer is generally credited with constructing the referenced Postlewaite Covered Bridge in 1872. Furthermore, the commissioners acknowledged in the Articles of Agreement that the specifications for the superstructure were "submitted by the said W. T. Washer."

¹In September, Miller was paid \$15 for his specifications for the "Patoka River Bridge." Pike County, "Commissioners Record," J: 252, 255, 277.

²A "perch" is 1.5 feet wide by one foot high by 16.5 feet long, equaling 24.75 cubic feet.

³Robert Smith only had one iron bridge patent to his name: #339,492 was granted in 1886, more than a decade after Pike #150 was built, and dealt with improved ways of forming the "eyes" at the ends of eye-bars. Smith did not receive a patent, at least in his own name, dealing with any sort of arch or bowstring truss bridge. There was, furthermore, no reference to a patent in the Smith Bridge Company specifications for the Patoka River bowstring.

⁴Pike County, "Commissioners Record," J: 279, 281-286. Copies of the specifications and Agreement can be found Appendix A..

⁵George Gould, *Indiana Covered Bridges Thru the Years* (Indianapolis, 1977), 31-32, 50; Wayne M. Weber, *Covered Bridges in Indiana* (Midland, Michigan, 1977), 63.

⁶Pike County, "Commissioners Record," J: 285.

Construction of the iron bridge was to be completed by January 1876. In December 1875, Washer received a partial payment of \$1,000 for work on the Patoka River Bridge. In March 1876, he received another partial payment of \$120 plus \$2,943.50 as the "balance [of] compensation for building an Iron Bridge across Patoka River per contract."

The bowstring soon became a notable Marion township monument. In June 1877, for example, when residents petitioned for a change in the road carrying the bridge, they had already informally renamed the Sulphur Springs and Augusta road as "the Iron Bridge and Augusta road." The commissioners also kept a close watch on the bowstring. In August 1889, they ordered the Marion township trustee to give notice to the parties who built a dam across the Patoka River "at the iron bridge in said township" to remove same or suit would be brought by the county "so that the dam will not damage said bridge or its abutments."

The significance of the Patoka River iron bridge extends well beyond nineteenth-century Pike County, Indiana. The county's consulting engineers were correct to consider this "a unique structure of historical importance." The bridge was also determined "SELECT" in the statewide historic bridge inventory. 11

This is the only surviving example of the Smith Bridge Company's "Open-Arch" Bridge design in Indiana and possibly in the United States. It was, furthermore, built by William T. Washer, "a celebrated contractor and bridge-builder" across southwest Indiana and north central to northwest Kentucky in the last half of the nineteenth century. The Patoka River Bridge reveals ways in which both its designer and its builder each shifted efficiently and collaboratively between timber and iron as bridge materials and with production and erection increasingly mechanized and specialized concentrating on bridges

⁷Pike County, "Commissioners Record," J: 347, 377, 385.

⁸The petitioners were quite specific about the location of the road: beginning in S2/T2S/R7W and heading south into S11 and then west to Patoka township. Pike County, "Commissioners Record," K: 48, 56-57.

⁹Pike County, "Commissioners Record," O: 418.

¹⁰United Consulting Engineers, Inc., *Bridge Reinspection Report for Pike County, Indiana* (Indianapolis, 1980).

¹¹Mead & Hunt, *Indiana Historic Bridge Inventory: List of Select and Non-Select Bridges* (December 2010), 4: 3-34.

¹²Interstate Publishing Co., *History of Daviess County, Kentucky* (Chicago, 1883), 435-436.

Robert W. Smith and the Smith Bridge Company

Bridge-building in the Midwest in the second half of the nineteenth century incorporated

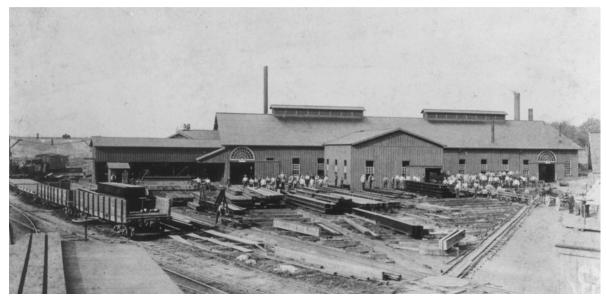
Robert W. Smith -photo courtesy of Miriam Wood

design, fabrication, and construction-erection in a very competitive process. From the start, Smith relied on efficiency in design and production to generate least-expensive bids. 13 As a young carpenter, he and his brother set up a woodworking machine shop and lumbervard in Tippecanoe City. Ohio, and reportedly invented a system of selfsupporting roof trusses for barns. When he focused on bridge work, Smith designed and secured a patent (1867) for a double-intersection Warren truss in timber and two years later (1869) for roofing and lateral bracing systems.14 Smith's timber truss design was not frozen in his patents. Indeed, he continued to develop his design into what some analysts have categorized as four types of Smith trusses. 15

First organized as the R. W. Smith & Company partnership, the business moved in 1867 to Toledo,

Ohio, where better rail transportation was available both for supplies of timber and iron and for shipment of pre-fabricated superstructures. In Toledo, it was formally incorporated as the Smith Bridge Company. While many bridge designers and fabricators concentrated exclusively on the more traditional timber-truss patterns, others opened for business as exclusively iron designers and fabricators. The Smith Bridge

¹³Mark Brown & Matthew Reckard, "Cataract Bridge: Historical Background" (J. A. Barker Engineering, Inc., 2001, rev 2002); Matthew Reckard, P.E., "Smith Trusses: Bringing Covered Bridges into the Industrial Age" (J. A. Barker Engineering, Inc.).


¹⁴Robert W. Smith, "Improvement in Bridges," U.S. Patent No. 66,900 (July 16, 1867); "Improved Bridge," U.S. Patent No. 97,714 (December 7, 1869).

¹⁵Ray E. Wilson, "The Smith Patented Truss," *Indiana Covered Bridge Society Newsletter*, April 1966: 1, 3, 4; Ray E. Wilson, "The Story of the Smith Truss," *Covered Bridge Topics* (National Society for the Preservation of Covered Bridges), April 1967: 2, 3, 5; Ray E. Wilson, "More on Smith Truss Bridges," *Indiana Covered Bridge Society Newsletter*, January 1972: 2.

¹⁶Robert W. Smith sold out to a group of investors in 1890 who reorganized the operation into the Toledo Bridge Company. Toledo Bridge sold out in 1901 to J. P. Morgan and were incorporated into the American Bridge Company.

Company of Toledo and the Massillon Bridge Company of Massillon, Ohio, on the other hand, worked in both timber and iron. Smith started in iron fabrication by 1870.¹⁷

Much of Robert Smith's success in both timber and iron was due to his inventiveness in industrial machinery, including "a gaining-machine, which does the work of 15 men", "a process for making a steel eye-bar", a "rotary saw, for making the joints of bridge-chords", "and a multiple punch, by which six pieces of iron can be punched at one operation." ¹¹⁸

Smith Bridge Company factory, Toledo, Ohio.

-photo courtesy of Miriam Wood

The Pike County Patoka River Bridge provides a relatively rare opportunity to detail some of the ways in which Robert W. Smith and his associates explored their way from efficient timber to efficient iron design and fabrication.

Smith's Wrought-Iron, Open-Arch Bridge, No. 1

The Patoka River bowstring was to have a clear span of 90-feet and be 93-feet "full" with a 14-foot roadway built "in accordance with accompanying plans and following specifications":

¹⁷The author's extensive but nonetheless incomplete research notes shows the Smith Bridge Company engaged in 26 bridge contracts in Indiana, of which 15 were for timber-trusses and 11 for iron.

¹⁸Clark Waggoner, ed., *History of Toledo and Lucas County, Ohio (*Munsell & Co., New York, 1888), 786-787.

Arched Top Chord

The chords were to be constructed "in straight sections of panel length, and when joined together, the ends of the sections will form a true segment of a circle." Each

section was to consist of two pieces of 7-inch channel bar "placed edgewise" and 10-inches apart with flanges outward. By creating an arch from short, straight sections of rolled iron rather than heating and bending sections, Smith followed

the straight-section principle he applied to his timber design. In both cases, it simplified construction without sacrificing strength.

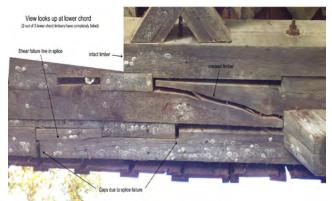
The arched-chord channels were to be held apart and in line "by continuous trussing, consisting of a flat bar of iron ½ by 2.5 inches, placed edgewise between the channel bars, bent into zigzag shape and riveted firmly at its angles to the respective channel bar alternately." The ends of the sections were to be planed "to a perfect surface at angles corresponding to the radii of the arch, and when placed in position form tight perfect joints which are secured by plates firmly riveted." 19

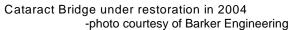
¹⁹Pike County, "Commissioners Record," J: 283.

The "continuous trussing" did require a fair amount of metal heating and bending, but was probably simpler to fabricate than a multitude of separate lacing bars and would require fewer rivets per foot of chord. It was also likely quicker and cheaper to install, although it may be a bit less strong.

Lower Chord

Each lower chord consisted of two runs of "flat bars of iron 5/8 by 4-inch." "At all splices the ends of all the links are enlarged to receive pin holes and have [the] same sectional area of iron as elsewhere." Round iron pins of 2-inch diameter join the four "links" of lower-chord eye-bar runs.²⁰





That pinning does not occur at panel points nor include truss web members is unique among Indiana's metal-truss superstructures. Smith may have carried over the practice of "splicing" lower-chord members between rather than in panel points from timber-truss design where sections of a run were typically connected with blocks or fish-plates.

²⁰In 1886 – more than a decade after the Patoka River Bridge was constructed – Robert W. Smith did receive a U.S. patent (#339,492) for manufacturing eyes for steel eye-bars by working wrought iron into the eyes. Here again Smith was concerned with efficiency and with the newer material, steel.

Below are two examples of intra-panel splices in timber trusses. To the left can be seen Smith's use of spice blocks to connect a lower-chord run on the Cataract Bridge in Owen County. To the right illustrates J. J. Daniels' use of fish-plates for the same function in the West Union Bridge in Parke County. Both employ intra-panel joints. Also note Smith's search for efficiency in the simplicity of his splice blocks compared with Daniels' more elaborate fish-plates.

West Union Bridge, Parke County

The specifications for the Patoka River Bridge do not describe the point of bearing where the top and lower chords meet. At span-end, the lower chord plates have been shaped as round and threaded rods which pass through a cast-iron plate placed at the end of the top-chord channels. The rods are then bolted for adjustment to keep the top chord's designed circumference true.

Posts

The specifications called for 2.5-inch "Star iron with thread cut on each end."

The lower end passes between the pairs of lower-chord eye-bars and through a castiron shoe where secured by adjustable "jam nuts above and below." [below, left]

The upper end passes though a "cast block placed between the channel bars of the arch with jam nuts above and below." [to right]

Diagonal or Tie Rods

Round iron rods supplied the truss diagonals. Their dimensions varied by location. The specifications called for "the upper ends" to be "looped round upper end of posts." The "lower ends" were to pass between the pairs of lower-chord eye-bars, "through cast shoe beneath and adjusted and secured by threat and nut." [lower left] In practice, the upper ends of the diagonal rods were also threaded, passed through cast blocks, and were secured with nuts. [lower right]

"Brace Beams" and Lateral Bracing

A pair of "overhead girders" form "brace beam[s]" running perpendicular to the roadway and riding on the lower chord adjacent to lower panel points 4 and 6. The "brace beams" extend beyond the trusses to anchor sway braces. According to the specifications, the girders consist "of two parallel flat bars of iron [½ by 3 inches], held apart and in line by continuous zigzag trussing [3/8 by 2 inches] riveted at its angles to each side alternately."

A sway or "diagonal brace" of "Star iron" extends from each outer end of a "brace beam," through which the Star's threaded lower end is bolted <code>[below, left]</code> "up to the arch" where the Star iron end has been forge-welded into an eye and bent to enter a post and, through the post, the upper panel point's cast-iron block <code>[below, right]</code>.

Round 3/4-inch iron rods with threaded ends originally supplied lateral bracing. The rods extended diagonally between the lower panel points of the trusses, passed through the cast-iron blocks there, and were secured with nuts.

Floor Joists

"To be of oak 3 by 10 inches laid on [the lower] chords 2-feet apart."

Flooring

"To be of oak lumber 2 1/4-inches thick and laid diagonally."

From the bracing through the joists and the flooring, the specifications made no reference to floor-beams – members typically found on metal-truss superstructures. In metal-truss structures floor-beams provided some lateral stability and supported runs of stringers which in turn helped to carry the roadway above. Smith's "overhead girders" or "brace beams" did add some lateral stability but had nothing directly to do with supporting the roadway. Instead, the oak floor joists which ran perpendicular to the roadway at 2-foot spacing picked up the floor-beam function in deck support – much as found in Smith's and in many other timber-truss bridges. Thus the Smith Bridge Company's "Wrought-Iron, Open-Arch Bridge" design was transitional in that it

incorporated a number of elements it regularly employed in timber-truss design as well.²¹

Capacity of Bridge

"Per W. T. Washer," the Smith Bridge Company "warranted" this Wrought-Iron, Open Arch Bridge "to sustain a test of 1,800 lbs. per lineal foot, exclusive of its own weight, without subjecting the iron to a greater strain than 1/5 of its ultimate strength."²²

The cast and wrought iron in the structure was "to be thoroughly painted with two coats of mineral paint and linseed oil."

William T. Washer

Although Washer was a well-known bridge-builder in southwestern Indiana and in north-central and northwest Kentucky in the last quarter of the nineteenth century, his reputation rather quickly faded from view after his death in 1901. He has been best remembered in covered bridge circles. But even the dean of Hoosier covered bridge history, George Gould, reported that "little is known about William T. Washer, except for the covered bridges he built in southwestern Indiana." "He built at least 20 covered bridges which, I believe, included the eight in Evansville over Pigeon creek." Gould was, however, sure of Washer's paternity for only nine of the 20 bridges he noted. 24

Perry-Spencer Co. line: Huffman Mills & Shoals **Posey Co.:** Grafton, Solitude, New Harmony

Pike Co.: Pikeville & Winslow (?)*

Dubois Co.: Kessner's (?) & Postlewaite (?)** **Gibson Co.:** Old Red, Moore & Wheeling **Vanderburgh Co.:** eight in Evansville (?)

²¹The Massillon Bridge Company, the other Ohio designer-fabricator who also build in timber and iron, also carried over some elements of its timber design into its iron bowstring. Joseph Davenport's patented "Wrought Iron, Howe Truss Arch" has some of the same elements as Smith's "Open-Arch."

²²For a contemporary assessment of the Smith Bridge Company's warranted strength, see emailed letter of James A. Barker to James L. Cooper, 26 August 2013 (Appendix B).

²³George E. Gould, *Indiana Covered Bridges Thru the Years* (Indianapolis, 1977), 18.

²⁴Gould's list of structures attributed to Washer:

^{*}Indeed, H. J. Dare, not Washer, secured the construction contract for the Winslow Bridge in September 1877. Pike County, "Commissioners Record," K: 119-126.

^{**}References in the Specifications cited above rather confirm Washer's construction in this case.

Like Robert W. Smith, Washer began his career as a carpenter and soon moved into bridge-building. Both understood the benefits of efficiency for successful contracting in the second half of the nineteenth century. Smith focused on design and fabrication. Washer, on the other hand, concentrated on contracting -i.e., on the building of bridge substructures and the erection of superstructures - and depended on others for their design and fabrication. In this increased specialization of function, Washer moved ahead of most nineteenth-century builders of timber bridges and towards twentieth-century practice.

Born in June 1829, William T. Washer by age twenty worked as a carpenter in Troy township of Perry County, Indiana, and quickly became a community leader. When Troy was reincorporated in 1859, Washer was named trustee. In the same year, he became an officer at the founding of the local masonic lodge.²⁵

As the bridge under consideration illustrates, Washer did not always work in timber. That the Smith wrought-iron bowstring was erected within a year or two of the three Smith timber-truss superstructures Washer is credited with erecting in Gibson County is more than coincidence. Washer's relationship with the Smith Bridge Company during the second half of the 1870s was, indeed, close. He allied himself with Smith's design and productive efficiencies in fabrication.

Washer's versatility, extended marketplace, and relationship with the Smith Bridge Company were also noted in passing in two court cases that reached the U. S. Supreme Court.²⁶ Washer received a contract from Bullitt County, Kentucky, to build a stone arch bridge over Pond Creek on the Jefferson County line in July 1878, and he went to court to secure pay for the construction.²⁷ According to the court decisions, the Smith Bridge Company reportedly supplied materials valued at \$340.75 for the Pond Creek Bridge.

Washer did a fair amount of bridge masonry along with the erection of superstructures. His name can be found along with date (1874) on a nameplate on the stone abutments of the Dry Run Bridge on Wyandotte Avenue in Crawford County. He is also known to have received contracts for stone work in Vanderburgh County.²⁸ Son Edward, who

²⁵Troy Township, Perry County, Indiana, 1850 federal census, 367b; Thomas J. De La Hunt, *History of Perry County, Indiana* (W. K. Stewart Co., Indianapolis, 1916), 113, 120.

Washer v. Bullitt County, 110 U.S. 558 (1884); Bullitt County v. Washer, 130 U.S. 142 (1889). Both cases concerned the same bridge.

²⁷Bullitt County is located south of Louisville towards the center of the state.

²⁸Vanderburgh County, "Commissioners Record," D-1: 307, 312-314,

rose to virtual partnership in the family business, was designated in the 1880 federal census as a "stone mason." 29

Washer was by no means tied exclusively to the Smith Bridge Company. In the 1890's after Smith sold his company, and it was transformed into the Toledo Bridge Company, "W. T. Washer & Son of Troy, Indiana" switched his informal partnership to the Indiana Bridge Company. He signed 21 contracts for metal bridge superstructures and parts with Muncie metal designers and fabricators. These included from 1892 through 1898 a couple of through-truss structures, a number of ponies, a "cantilever leg," some "beam girders," and a few sets of metal caissons.³⁰

Not surprisingly, Washer had expanded the definition of his work from "carpenter" to "bridge-builder" by the time the 1900 census-taker arrived on the family doorstep. ³¹ Still, we know only a piece of what this builder constructed. His work in Kentucky remains largely unknown, and his erection of timber, stone, and metal bridges in Indiana only partly documented. Fortunately, Pike County Bridge #150 remains as a testament to the invention and fabrication of the Smith Bridge Company, the craftsmanship of William T. Washer, and the efficiencies of each in and through their specialization.

Recommendations

Pike County Bridge #150 has survived due to the repairs and rehabilitations undertaken over the years by the county authorities. In December 1908, for example, the commissioners decided to refloor "The Iron Bridge" over the Patoka River near Survant. John Survant received a contract to lay new oak joists (12-inches wide by 2-inches thick by 16-feet long) on centers 12-inches apart.³²

The major rehabilitation occurred in 1978 when the original stone abutments were encased in concrete, some rolled steel stringers added, and more external sway braces welded on. The county also built a timber structure above steel beams seated on raised abutment ledges. Placed inside and somewhat above the old iron superstructure, the new one reduced the roadway to a width of 10 feet and 2 inches.

Not surprisingly, Pike County finds Bridge #150 an issue for contemporary traffic and wishes to replace it for vehicular use. The best preservation alternative would be to remove the whole assemblage from the Patoka River, recycle the 1978 additions, repair

²⁹Troy Township, Perry County, Indiana, 1880 federal census, 67a.

³⁰Contracts 730, 1838, 2004, 2012, 2178, 2310, 2310 1/3, 2310 ½, 2311, 2331, 2359, 2519, 2520, 2526, 2983, 3028, 2028 1/4, 3028 ½, 3109, 3110, 3110 ½, "Client Index," Indiana Bridge Company (Drawings Archives, School of Architecture, Ball State University).

³¹Troy Township, Perry County, Indiana, 1900 federal census, 5b.

³²Pike County, "Commissioners Record," T: 159-161.

the original cast and wrought iron, relocate the superstructure to an appropriate pedestrian trail location, and rebuild the timber deck and roadway to the original specifications. As James Barker has suggested, the old superstructure restored to original strength should meet AASHTO standards for pedestrian loading (see Appendix B). And, without modern add-ons, the superstructure will fully display the special and rare Smith Bridge Company design, originally erected by the once highly respected builder, William T. Washer.

Proceedings of How. Board of Commissioners of Oche Caunty Encious when Convened in Special Session on Tuesday the 21st day of September, 1875, Present the Hanorote of Bownan, Patrick M Mattand Herman Hende Commissioners and Such Servel J. Patterson Cauchy Anditor,

And now the Board order the following to be Entered of Records to-wit: Specifications of Abutmento For a bridge to be exected acrop Caloka Niver at or near the My of the Aby of Sec. 2 in Town Leve South of Range Seven West, and the line of the New Sulphur Springs & Lugueta Road where the same cropes the River oforesaid in the Caunty of Pike in the State of Sudiana, to-wit: There are to be crected two abutinents, are thereof on Each side of the River and at the place ofouraid, Said obut ments to be five by familiew and one half feet on the lofe, and to taken are inch to the foot from the base to the top on the front and Ends, the hight there of to be directed and deter mined by the Superintendent of said Bridge, There are also to be rected four curved roing walls, one which is to be built and carried up at Each End and with the abestructo oforesaid which are to be there feel thick on the topo and Covered with Caps of Stane six inches thick. not less than are foot wide and three feet long, all to have the same taken as the obuter deto, the length thereof to be directed by the Superintendent of occorded the Contractor

to sink the formedation for the above work a sufficient defetto so as to seeme a good and solid foundation, and if necessary, the same to be underlaid with his layers of while Oak limber one fool square cropsing such otherwith an extension or projection of six inches at the base of the abertunato,

The rock to be used in the building and Constructions of the work of ace of the abeliants in thickness, to be well jainted and the face of the obutionals and twing walls are to be duried the came as rocks are dreped on the Partlethwart Mill Poridge on Patrice River in Derbais Camely and State of Endiana, and it is further provided that there are to be binders in very second layer or tier of works not over these both shorts and

ussioners' Record, Pike County,

Day

Term, 187

not less than there feet in length with not less than are foot top atternating from front to rear and the fille to be large rock of the vame thickness as the front layers, as of the above stand work to be laid in good mortan made of pene limo and clean sound well mixed The hight of the abutinouto and hight and length of the wing walls are to be directed and determined by the Desperintendent and the said abutinents to be ninely feet about in the clear at the top when Completed. All of the above work to be done and performed in a good substantial and workmanlike manner and to be warranted by the Caretractor in a good and seeffreeent Boud in double the amount of the Coutract price for the term of twelve mouths from the line the work shall be received or accepted by the Board of Coming coners of Pike Caunty and State of Cudiana, or their ugento,

All the above matters and things set forth here in one to be done and performed by the contractor and the work to be completed on or before the 10th day of Recember, 1870,

The Carelact for the Construction of the above works to be let and by the perch, and the Board of Commission asserved he right to reject any and all bids

If they see proper,

The above rooth to be paid for at the lines and in the manner following, One faculty the Contract price to be paid in bandy orders after the Contractor shall have given Bond as required by the terms of the Contract and the remaining three fourths in County Orders when the bridge is Completed and received.

And it is understood that all necessary south work in felling the statements to the level of the Bridge is to be included in the Contract and done and pur formed by the Contractor, and that lin fech of Each end of the bridge be covered with small broken stone the feel width of said bridge, at least sight including avry tier of stone necessary to the treation of said Bridge to be well growted with good line mortan and the contractor to formish all the malicial mecessary for

283

Commissioners' Record, Pike County, Special Day Session Term, 187

Said work. Adopted July the 21st, 1875 J. J. Bowman & Calouk M. Foll Cours. Herman Henker

Specifications for Smith's Mought form, Open-Arch Bridge, Which we propare to build for Pike Go. Luck To Cousist of one span go feet in clear, and 93 feet full with and Roadway 14 feet in clear, To be built in accordance with accompanying places and follows ing specifications. vor: Arches To be constructed in straight Sections of panel length, and when joined together, the Ends of the Sections will form a true segment of a circle, the Sections with Euch coursist of two pieces of (7") inch Channell bas Placed Edgewise or wertically, and to inches apart with flavinges autwork and are held apart and in line by continuous truring, Consisting of a flat bar of iron 1/2 by 21/2 in ches. placed Edgewire between the chanmel bars bent into zeg zag shake and riveled firmby at its angles to the despective channel bar altimates. The Enclo of the sections are placed to a perfect surface at angles companding to the radii of the archands when placed in positions from light perfect joints which are seemed by plates firmly riveted bhords To be links of flat bars of iron 78 by 4 inch at all splices the Ends of all the links be Enlayed to receive kin holes and beene Same Se ctioned area of iron as chrewhere, and with not less than two links in Each choof. The Ends of links (at Splices) to be connected with perfect Eurface 20 as to Secure a uniform bearing. To be 21/2 inch star iron with thread cut on Each End. The lower ted passes between the chord links and through the Cash iron shoe beneath and are adjusted and secured the East block placed between the channel bans of the and

with jam mets above and below. Diagonalor Til Rods To be of round iron. varying in Size as for duncusions shown on plan: the afeter Ends are looked round links and through Cash Shoe beneath and an adjust ted and Securidby thread and nut. Overhead girders are constructed of two parallels flat bars of iron held apart and in line by continuous gizgang trussing ainsted at its angles to Each side alternately. The brace beam will be constructed in the same manner as the overhead grider the poralle bars to be 1/2 by 3 zigrang bar 3/8 by 2. they will Estendante side of chords on lach side Sufficiently to form as base, and from the ends of which a diagonal brace of 2 Star iron will ceach up to the arch. Lateral Rods. both waker and lower, to be of avend iron 3/4 inches dian ater with any bet of Overhead griders Leufeds Floor Jaist To be of Oak 3 by to inches laid on chords 2 ft apart. To be of Oak lumber 21/4 inches thick and lacit diagonally-Capacity of Bridge. Marrauted to Sustain a Rest of 1800 lbs. per lineal fool, Exclusive of ito own weight without Subjecting the crow to a greater strain than 15 of its sellimate strength. The whole to be finished complete in a neating roorkunauliko anamen with all joints and bear ings perfect. All materials to be of the best quality and the whole Structure, Except joich and flooring to be thoroughly painties with two coats of Animerel paint and lintsend ail Refectifielly Submitted Sunth Budgo Coa Per W Washer

atiliele of A grunnel. This Agreement made and Entered into on this the day of September A.D. 1875. by and between I. J. Bacoman. Patrick Melobband Herman Henks Commissioners of Pike County in the state of Indiana of the Such part and W. I Washer of the learning of Teny in the State of Indiana of the Second party Witnesseth. That the Said Commissioners Party of the first part, have this day awarded to the said M. J. Washer. Bridge acrof Patoka River where the Sulphur Springs and Sugustão Road interesto with Said River in Marion Township in the County and State of our aide The baid Commissioners, barly of the first pack age and bind themselvs to pay to the said ". J. Washer, pady of the Second part one fourth the Contract price for building said Bridge (the Stone work and Streetine there whom when he shall have given board for the faithful and workmanlike performance of the worth, according to the Secrifications for the stone work of said Bridge gotten up by Henry A. Willer week adopted by the Commissioners of wees wiel at their Special Session July the 21st, 1878, and Erect whom the Stone work when Com seeled Smith's Manight Iron Open Arch Bridge" according to the Specifications for daid From work out. milled by the Said IV. J. Washer, party of the second sart, to the vaid Commissioners, part of the verefit by said Cammisianus the day following (Sept. 11"1875)

and the vaid Commissioners, party of the first part, agree and bind them selves to any said W. J. Washer, party of the &count, back, the remaining three fourthe of the Contract price for building said Bridge when the same is Completed in all things according to the Specifications a dopted and received by the Superintendent of Said worth, And the Said M. J. Washer, party of the se could back agrees and binds himself to do all the work mentioned and ne gueed to be done by the Specifications for the Stone work in cluding timber form estation upon which the Stace work is to be exected's aring walls, executions and receive therefor the Sum of Six Hollars and Sweety fine Ceuloper Cubic perch for the Stano work in fuch Compensation therefor, and the Said M.J. Washer, party of the Second sail fullow agrees and binds himself to erect upon the Staire obulinule when Compiled Smith's Wrought oran, Open Arch Bridge" for the sum of Jevery two Dollars per foot, all of which is to be done in a good workmanlike order, duct it is treade a journ of this courtrant. that the County duditon inno to M.J. Wash orders on the leeas en of Pike bandy when he Shall haine given bound for the faithful senforms ance of this Contract, for one fourth the contract price for building Baid Bridge, and Orders an the Leeasure of oresaid for the remaining three fourths of the Cuntract price, when the work I shall halve been completed and received and the said M. J. Washer agrees to receive said in payment for building Said Bridge, The Stone work to be cumpletiel on or before the 10th day of December, 1875; and the Bridge thereon on on before the 10th day of January 1876.

J. A. Barker Engineering, Inc.

101 W. Kirkwood Ave., Suite 140 Bloomington, IN 47404 812-332-5944 Fax: 332-5922

Jim,

I will attempt to translate to modern roadway loading as requested. May get a bit technical, so you may need to simplify for your audience, but you will have this as backup.

Background

Standard <u>roadway loadings</u> are used with certain general <u>analysis methods</u>, with the <u>combination</u> defining a general approach to structural design. Knowing one without the other is like having half of a treasure map. In the US, the AASHTO guidelines are generally used to define both roadway loadings and analysis methods, and the combination (after having been constant for half a century) has changed twice in the past 15 years. For comparison with 19th century loadings, the standard AASHTO "H" loadings are appropriate. Also, the "allowable stress" method is reasonable and easy to compare. Allowable stress method has been used since the 1850's and was the AASHTO anointed method until ten or fifteen years ago, so is reasonably current.

Starting around 1995, "load factor method" was an acceptable alternative to "allowable stress" method, but used the same AASHTO "H" loadings. Starting around 2004, "load and resistance factor" method became AASHTO's recommended method, and it uses a different roadway loading. For bridges designed before 2004, INDOT lets you design using "load factor" method. The new analysis methods were calibrated to give roughly similar results, in terms of load ratings, as the older allowable stress method, so the latter should be adequate for this exercise.

Roadway Loading: AASHTO requires you to design for two alternate load applications. For this exercise I will assume an AASHTO 20-ton design load, corresponding to a "LOAD LIMIT 20 TONS" sign on road. The first design case is a single semi trailer truck having 3 axles. The front two total 20 tons, and the third axle (supporting rear end of trailer) weighs 16 tons. The second design case approximates (says AASHTO) a train of lesser-weight trucks closely following each other. This is a uniform load of 640 pounds per foot along the road per traffic lane, plus a concentrated load of 18^K for bending moment or 26^K for shear. For this exercise, just use the larger. One "K" = 1,000 pounds. See attached page from AASHTO. You must multiply these loads by an impact factor varying with bridge length. For an 88-foot span it is about 1.24.

Analysis Method: Allowable stress method is pretty simple in concept. It is assumed you know the material stress (e.g., psi) at which each part of your structure yields (in common parlance,

"fails"). Your design technique is to specify large enough members so that the combination of the structure's self-weight (dead load) and design roadway loading (live load plus impact) stresses the weakest member to no more than a specified allowable stress that is less than the yielding stress. For wrought iron and steel, the allowable stress in tension and compression has been generally set by AASHTO as 55% of the yielding stress. This 55% assumes some abuse by irresponsible truckers, so emergency vehicles of known weight are allowed to pass at higher percentages – but that's irrelevant here. Also, for compression members, the designer must account for lower yielding stresses due to buckling. And buckling depends on unsupported length and stiffness of the compression member's cross section. So that part gets complicated, structurally. It's not just a question of how much cross section area a member has. And the arch is a pure compression member.

Rough Conversion of Pike 150's Design Specification

The design strength of the Pike 150 arch is going to be less than the iron's yield stress because of buckling. And it will be much less because the pitiful star-iron lateral braces don't give much lateral support. The crossed diagonals give the arch marginally adequate lateral support in the vertical direction, but the star iron outriggers are poor support in the transverse horizontal direction. They may be marginally adequate if everything is perfect. But today's vehicles are heavier than 1870 vehicles and move much faster = greater potential impact energy ($e=m\underline{v}^2$) and in both longitudinal and transverse horizontal directions. Vehicle impacts happen.

I am going to estimate that the arch would buckle when the arch iron is stressed to about 1/3 of its test strength. To be a bit less conservative and make the math easier, I will say, at 36% of yield stress.

Now, you say the bridge was designed to sustain its own weight (dead load) plus 1,800 lbs per foot live load without exceeding 20% of its perfect "ultimate strength". That happens to be 55% of my reduced, guesstimated buckling stress (20% / 36% = 55%), and that exactly equals the modern allowable stress design goal.

But, how does the 1,800 design live load correlate with modern AASHTO "H" loading? Let's compare with the AASHTO H-20 design loading. The trouble is that both load alternatives described above (called "truck" loading and "lane" loading) contain concentrated loads. These must somehow be converted to" equivalent" uniform loadings¹. There are no guidelines for this. One must make "reasonable" assumptions.

The AASHTO semi trailer has a wheelbase between 28 feet and 44 feet, whatever produces the greatest load in structure. In reality, few 72,000 pound trucks are this short. So, spreading out

¹ In 1870 wagons weren't so heavy, and a herd of cows was probably the heaviest loading on bridges. So using a uniform load per foot was a reasonable design criteria – then.

the concentrated axle loads over 50 feet, and assuming this extends the full 88-foot length of bridge seems reasonably conservative. For this single-lane bridge, doing so would give an "equivalent" uniform load of $72^K \times 1.24$ impact / $50^\circ = 1,780$ lbs per foot.

Similarly, the 26k concentrated load of the "lane" loading case might reasonably be spread out over, say, 30 feet. That would add 26^K x 1.24 impact / $30^\circ = 1075$ lbs per ft to the 640 x 1.24 = 795 lbs per ft uniform load for that case, making a total uniform load of **1,870 lbs per foot**. This is slightly higher than the truck loading value, making "lane" loading the controlling case.

So:

If the Pike County Bridge 150 arch-truss was truly designed to carry its own weight plus 1,800 pounds per foot at 20% of its material's yielding stress, the above logic suggests that it should be strong enough to carry a modern day load rating of 20 tons x 1800 / 1870 = 19 tons.

I would personally feel more comfortable thinking in terms of a posted **15 ton load rating**, provided that

- (1) the rigorous analysis of all parts of the repaired arch-truss primary truss supports it.
- (2) the lateral bracing is strengthened to handle likely impacts from vehicles, trees, floods, etc.
- (3) the floor system is designed for it.
- (4) a stronger bridge railing is provided to protect the arch-truss from vehicle impacts.

Pedestrian Loading: The pedestrian design loading is set by AASHTO at 85 pounds per square foot for a bridge such as Pike 150. Multiplied times the 10.3-foot deck width, this is only 880 pounds per foot along bridge, much less than the 1,800 pounds per foot you found to be the specified design loading. A rigorous analysis, including the effects of partial-span loadings, should be part of a proper rehabilitation design project.

James Barker August 26, 2013 15557

STATE OF MOIANA SHAPE STONAL ENGINEERS A. BARRES A. BARRES

² This is done to provide an estimate of the strength of the arch-truss. Actual project design would involve a rigorous mathematical analysis of the arch-truss. And the floor system would be designed to carry actual axle forces.